Elektrische Energiespeicherung

Elektrische Energiespeicherung (Prof. Bessler)

Die elektrische Energiespeicherung ist ein integraler Bestandteil einer Energieversorgung mit hohem Anteil Sonnen- und Windstrom, sowie Kernkomponente der Elektromobilität. Zur elektrochemischen Energietechnik gehören Batterien, Brennstoffzellen und Elektrolyseure. Sie erlauben die gegenseitige Umwandlung von elektrischer Energie und chemischer Energie. Der hohe Wirkungsgrad der Umwandlung und die hohe Energiedichte chemischer Energieträger haben diese Technologien zu einem festen Bestandteil unseres alltäglichen Lebens werden lassen.

Die Forschungsgruppe Elektrische Energiespeicherung (EES) wird von Prof. Dr. Wolfgang Bessler geleitet und ist am Institut für nachhaltige Energiesysteme (INES) angesiedelt. Ihr Forschungsgebiet ist die computergestützte Batterie- und Brennstoffzellentechnik. Sie entwickelt skalenübergreifende und multiphysikalische Modelle, um Batterien und Brennstoffzellen besser zu verstehen und zu optimieren. Die Gruppe untersucht außerdem die Integration in Energiesysteme. Die Aktivitäten werden durch experimentelle Zellcharakterisierungen ergänzt. Ziel ist die verständnisgetriebene Entwicklung der elektrischen Energiespeicherung zur Verbesserung von Leistung, Lebensdauer, Energiedichte und Sicherheit.

Die Gruppe widmet sich folgenden Forschungsthemen:

  • Batterien: Lithium-Ionen-Batterie, Lithium-Luft-Batterie, Natrium-Luft-Batterie
  • Brennstoffzellen: Polymerelektrolytmembran-Brennstoffzelle, Festoxid-Brennstoffzelle
  • Systemtechnik: Energiesystemsimulation, Smart Microgrids mit Power-to-gas (Elektrolyse) und Power-to-heat

Die Aktivitäten werden im Rahmen von öffentlich geförderten Projekten, Industriekooperationen sowie Doktorarbeiten und studentischen Arbeiten durchgeführt.

Eine Kurzdarstellung der Aktivitäten kann unter folgendem Link heruntergeladen werden:  Wolfgang G. Bessler, „Elektrische Energiespeicherung mit Batterien und Brennstoffzellen“, Forschung im Fokus, Hochschule Offenburg (2020). 

Projekte Forschungsgruppe EES

• Elektrochemische Druckimpedanzspektroskopie für die Charakterisierung von Transportvorgängen in elektrochemischen Zellen – EPISTEL (DFG, März 2018 – August 2021). In diesem Projekt entwickelten wir neue dynamische Methoden für die Diagnostik von PEM-Brennstoffzellen.

• Modellbasierte Gesundheitsdiagnostik von Lithium-Ionen-Batterien – LIBlife (Land Baden-Württemberg/EU, Dezember 2018 – Juni 2021). In diesem Projekt verwendeten wir unser Know-how in der Alterungsmodellierung von Lithium-Ionen-Batterien, um eine praktisch anwendbare Diagnostik des Alterungszustandes (State of Health) zu entwickeln. Die entwickelten Algorithmen kommen in Batteriesystemen von industriellen Kooperationspartnern zum Einsatz.

• Modellierung von gedruckten Batterien. Promotionsprojekt im kooperativen Promotionskolleg „Modellierung, Entwurf, Realisierung und Automatisierung von gedruckter Elektronik und ihren Materialien – MERAGEM“ (Land Baden-Württemberg, September 2016 – Dezember 2020).

• Diagnostisches Batterie- und Photovoltaiklabor für Energiefragestellungen der Industrie 4.0 – Enerlab 4.0 (BMBF, Februar 2018 – Juni 2020). Diese umfangreiche Investitionsmaßnahme beinhaltete Geräte und Anlagen für Batterie- und Photovoltaikuntersuchungen.

• Vorhersage und Verlängerung der Lebensdauer von gekoppelten stationären und mobilen Lithium-Ionen-Batterien – STABIL (BMBF, Januar 2016 – Dezember 2019). Wir untersuchten die Alterungsmechanismen und Lebensdauern von Lithium-Ionen-Batterien sowohl auf Einzelzellebene als auch auf Batteriepackebene.

• Lithiumbatterien mit Luftelektrode – LiBaLu (BMBF, Januar 2016 – Dezember 2019). In diesem Projekt entwickelten wir Modelle von Lithium-Luft-Batterien und verwenden diese zur Designoptimierung einer Demonstratorzelle.

• Lebensdauer von Lithium-Ionen-Batterien für die dezentrale Speicherung regenerativer Energien: Experimentelle Bewertung und modellbasierte Optimierung. Promotionsprojekt im Rahmen des kooperativen Promotionskollegs „Dezentrale Erneuerbare Energiesysteme – DENE“ (Land Baden-Württemberg, November 2014 – Oktober 2017). Wir entwickelten und validierten Modelle von PV-gekoppelten Lithium-Ionen-Batterien, mit besonderem Fokus auf der Lebensdauer der Batteriezellen.

• Stabilisierende Netzanbindung eines lokalen Smart Grids – Smart Link (Elektrizitätswerke Mittelbaden, September 2014 – Februar 2017). Mithilfe von Energiesystemmodellen eines Smart Microgrids mit Batteriespeicher entwickelten wir netzdienliche Betriebsführungsstrategien.

• Optimierung von Ladeverfahren einer Lithium-Ionen-Batterie unter besonderer Berücksichtigung des Temperaturverhaltens – TempOLadung (BMBF, November 2013 – November 2016). Gemeinsam mit dem Industriepartner Leclanché entwickelten wir optimierte Ladeverfahren für eine Lithium-Ionen-Batterie unter besonderer Berücksichtigung des Temperaturverhaltens. Dafür wurde eine kombinierte Methodik von skalenübergreifender Modellierung, computergestützter Optimierung und Experiment angewendet.

• Mechanismus und Design der Abscheidung von Lithiumoxiden in Lithium-Luft-Batterien – LiO2Mech (BMBF, Januar 2015 – Juni 2016). Dieses Projekt förderte die wissenschaftlich-technologische Zusammenarbeit mit den USA. Konkret wurden gemeinsam mit Prof. Robert J. Kee (Colorado School of Mines) Modelle und Simulationstechniken für Lithium-Luft-Batterien entwickelt.

• Verbesserung von PEMFC-Leistung und -Langlebigkeit durch skalenübergreifende Modellierung und numerische Simulation – PUMA MIND (EU, Dezember 2012 – Dezember 2015, www.pumamind.eu). Wir untersuchten Alterungsmechanismen von PEM-Brennstoffzellen für mobile Anwendungen. CFD-Simulationen auf Zell- und Stackebene wurden mit mikroskopischen Degradationsmechanismen über die Skalen hinweg gekoppelt.

Thermisches Durchgehen von Lithiumbatterien (VolkswagenStiftung, September 2011 – Dezember 2015). Wir entwickelten deterministische Modelle des thermischen Durchgehens von Lithium-Ionen-Batterien. Wärmeerzeugung aufgrund chemischer Nebenreaktionen (z. B. Zersetzung der Solid Electrolyte Interface Schicht) wurde mit Wärmetransport und -Dissipation gekoppelt.

"Kommunaler Energieverbund Freiburg" – Demonstrationsbetrieb einer Elektrolyseanlage im Industriegebiet Freiburg-Nord zur Verbindung des Strom- und Erdgasnetzes und zur Speicherung erneuerbarer Energien (Land Baden-Württemberg, Dezember 2013 – Juni 2015). Im Teilprojekt Modellierung entwickelten wir mit Prof. Anke Weidlich Energiesystemmodelle zur optimierten Betriebsführung eines regenerativen Microgrids mit PV, Elektrolyseur, Brennstoffzelle und Batteriespeicher.

• Strom aus Luft und Li – Effiziente bifunktionelle Sauerstoffkatalysatoren – LuLi (BMBF, Juni 2011 – November 2014). Wir modellierten elektrochemische Reaktionen und Transportvorgänge von hochenergetischen Lithium-Luft-Batterien. Das Elektrodenverhalten (Wirkungsgrad, Kapazität) wurde durch komplexe ortsabhängige Ausfallreaktionen von festen Produkten (Li2O2, LiOH) bestimmt.

• Skalenübergreifende Modellierung und In situ-Diagnostik der Festoxid-Brennstoffzelle (Helmholtz-Gemeinschaft, Januar 2010 – Januar 2015, Zusammenarbeit mit DLR Stuttgart). Wir führten kombinierte theoretische und experimentelle Untersuchungen von Leistung und Lebensdauer von Festoxid-Brennstoffzellen (solid oxide fuel cell, SOFC) durch, mit dem Schwerpunkt der Entwicklung von Lebensdauermodellen.

Publikationen

  • Online-Publikation www.lifsim.com: LIFSIM - Berechnung von Fluoreszenzspektren
  • bessler.info: Abkürzung (leicht zu merken) zu dieser Webseite

 

2022  

119.        J. Brucker, R. Behmann, W. G. Bessler, and R. Gasper, "Neural Ordinary Differential Equations for Grey-Box Modelling of Lithium-Ion Batteries on the Basis of an Equivalent Circuit Model," Energies 2022; 15(7):2661. doi.org/10.3390/en15072661

118.        M. Quarti, A. Bayer, and W. G. Bessler, "Trade-off between energy density and fast-charge capability of lithium-ion batteries: A model-based design study of cells with thick electrodes," Electrochem Sci Adv. 2022, 2100161, https://doi.org/10.1002/elsa.202100161

117.        L. Schiffer, A. V. Shirsath, S. Raël, C. Bonnet, F. Lapicque, and W. G. Bessler, "Electrochemical pressure impedance spectroscopy for polymer electrolyte membrane fuel cells: A combined modeling and experimental analysis," J. Electrochem. Soc. 169, 034503 (2022), https://doi.org/10.1149/1945-7111/ac55cd

2021   

116.        M. Quarti and W. G. Bessler, "Model-based overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis of a lithium-ion cell with blend cathode," Energy Technology 9, 2001122 (2021). https://doi.org/10.1002/ente.202001122

115.        M. C. Yagci, R. Behmann, V. Daubert, J. A. Braun, D. Velten, and W. G. Bessler, "Electrical and structural characterization of large-format lithium iron phosphate cells used in home-storage systems", Energy Technology 9, 2000911 (2021), https://doi.org/10.1002/ente.202000911

114.        V. Leible and W. G. Bessler, "Passive hybridization of photovoltaic cells with a lithium-ion battery cell: An experimental proof of concept", J. Power Sources 482, 229050 (2021), https://doi.org/10.1016/j.jpowsour.2020.229050 .

113.        T. Wetzel, W. G. Bessler, M. Kamlah, H. Nirschl, "Simulation of mechano-electro-thermal processes in lithium-ion batteries", Energy Technology 9, 2100246 (2021). https://doi.org/10.1002/ente.202100246

112.        J. Brucker, W. G. Bessler, and R. Gasper, "Grey-box modelling of lithium-ion batteries using neural ordinary differential equations," Energy Informatics 4(Suppl:3):15 (2021), https://doi.org/10.1186/s42162-021-00170-8 .

111.        W. G. Bessler, "Zustandsbestimmung von Lithium-Ionen-Batterien: Ein neuer Algorithmus", forschung im fokus 2021, Hochschule Offenburg, 85-89 (2021).

2020

110.        S. Carelli and W. G. Bessler, “Prediction of reversible lithium plating with a pseudo-3D lithium-ion battery model”, J. Electrochem. Soc. 167, 100515 (2020), DOI: 10.1149/1945-7111/ab95c8

109.        P. Anitha Sukkurji, I. Isaac, S. Abhished Singaraju, L. Velasco Estrada, J. Aghassi-Hagmann, W. Bessler, H. Hahn, M. Botros, B. Breitung, “Tailored silicon/carbon compounds for printed Li‐ion anodes,” Batteries & Supercaps 3, 1-9 (2020), DOI: 10.1016/j.coelec.2020.04.017

108.        A.V. Shirsath, S. Raël, C. Bonnet, L. Schiffer, W. G. Bessler, and F. Lapicque, “Electrochemical pressure impedance spectroscopy: a promising alternative to electrochemical impedance spectroscopy for investigation of mass transfer phenomena in polymer electrolyte membrane fuel cells,” Current Opinion in Electrochemistry 20, 82-87 (2020), DOI: 10.1016/j.coelec.2020.04.017

107.        W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 129-132 (2020)

2019

106.        M. Mayur, M. C. Yagci, S. Carelli, P. Margulies, D. Velten, and W. G. Bessler, "Identification of stoichiometric and microstructural parameters of a lithium-ion cell with blend electrode," Phys. Chem. Chem. Phys. 21, 23672-23684 (2019), DOI: 10.1039/c9cp04262h

105.         M. Mayur, S. C. DeCaluwe, B. L. Kee, W. G. Bessler, "Modeling and simulation of the thermodynamics of lithium-ion battery intercalation materials in the open-source software Cantera," Electrochim. Acta 323, 134797 (2019), DOI: 10.1016/j.electacta.2019.134797 

104.         S. Carelli, M. Quarti, M. C. Yagci, W. G. Bessler, "Modeling and Experimental Validation of a High-Power Lithium-Ion Pouch Cell with LCO/NCA Blend Cathode" J. Electrochem. Soc. 166, A2990-A3003 (2019), DOI: 10.1149/2.0301913jes

103.         J. P. Neidhardt, W. G. Bessler, "Microkinetic Modeling of Nickel Oxidation in Solid Oxide Cells: Prediction of Safe Operating Conditions" Chem. Ing. Tech. 91, No. 6, 843–855 (2019), DOI: 10.1002/cite.201800197

102.         C. Kupper, S. Spitznagel, H. Döring, M. A.Danzer, C. Gutierrez, A. Kvashad, W. G. Bessler, "Combined modeling and experimental study of the high-temperature behavior of a lithium-ion cell: Differential scanning calorimetry, accelerating rate calorimetry and external short circuit", Electrochim. Acta 306, 209-219 (2019), DOI: 10.1016/j.electacta.2019.03.079

101.         L. Schiffer, D. Grübl, W. G. Bessler,  "Model-based analysis of Electrochemical Pressure Impedance Spectroscopy (EPIS) for PEM Fuel Cells", Proceedings EFCF 2019 - Low-temperature Fuel Cells, Electrolyzers and H2 Processing, ISBN 978-3-905592-24-5, Chapter 3, 70-77 (2019)

2018

100.          C. Kupper, B. Weißhar, S. Rißmann, and W. G. Bessler, "End-of-life prediction of a lithium-ion battery cell based on mechanistic aging models of the graphite electrode" J. Electrochem. Soc. 165, A3468-A3480 (2018), DOI: 10.1149/2.0941814jes.

99.          R. J. Kee, P. Weddle, H. Zhu, G. Jackson, A. Colclasure, W. G. Bessler, and S. DeCaluwe, "On the fundamental and practical aspects of modeling complex electrochemical kinetics and transport", J. Electrochem. Soc. 165, E637-E658 (2018), DOI: 10.1149/2.041813jes.

98.          M. Mayur, M. Gerard, P. Schott, and W. G. Bessler, "Lifetime prediction of a Polymer Electrolyte Membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model," Energies, 11, 2054 (2018), DOI: 10.3390/en11082054

97.          F. Hall, J. Touzri, S. Wußler, H. Buqa, and W. G. Bessler, "Experimental Investigation of the Thermal and Cycling Behavior of a Lithium Titanate-based Lithium-ion Pouch Cell," J. Energy Storage 17, 109-117 (2018), DOI: 10.1016/j.est.2018.02.012

96.          W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 83-86 (2018)

2017

95.          B. Weißhar and W. G. Bessler, "Model-Based Lifetime Prediction of an LFP/Graphite Lithium-ion Battery in a Stationary Photovoltaic Battery System," J. Energy Storage 14, 179-191, DOI: 10.1016/j.est.2017.10.002 (2017). 

94.          M. Mayur and W. G. Bessler, “Two-Dimensional Computational Fluid Dynamics Analysis of Transport Limitations of Different Electrolyte Systems in a Lithium-Air Button Cell Cathode,” J. Electrochem. Soc. 164, E3489-E3498, DOI: 10.1149/2.0451711jes (2017).

93.          T. Jahnke, M. Zago, A. Casalegno, W. G. Bessler, and A. Latz, “A transient multi-scale model for direct-methanol fuel cells,” Electrochim. Acta 232, 215-225, DOI: 10.1016/j.electacta.2017.02.116 (2017).

92.          S. Joos, B. Weißhar, and W. G. Bessler, “Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis,” J. Power Sources 348, 201-211, DOI: 10.1016/j.jpowsour.2017.02.063 (2017).

91.          C. Kupper and W. G. Bessler, “Multi-Scale Thermo-Electrochemical Modeling of Perfor-mance and Aging of a LiFePO4/Graphite Lithium-Ion Cell,” J. Electrochem. Soc. 164, A304-A320, DOI: 10.1149/2.0761702jes (2017).

90.          C. Kupper and W. G. Bessler, "Der Batteriealterung auf den Grund gehen", forschung im fokus, Hochschule Offenburg, 86-88 (2017)

2016

89.       B. Weißhar and W. G. Bessler, “Model-Based Degradation Assessment of Lithium-Ion Batteries in a Smart Microgrid,” International Conference on Smart Grid and Clean Energy Technologies, Offenburg, Germany, 134-138, IEEE Xplore, DOI: 10.1109/ICSGCE.2015.7454284 (2016).

88.          D. Grübl, B. Bergner, D. Schröder, J. Janek, and Wolfgang G. Bessler, „Multi-Step Reaction Mechanisms in Non-Aqueous Lithium-Oxygen Batteries with Redox Mediator: A Model-Based Study,” J. Phys. Chem. C 120 (43), 24623–24636, DOI: 10.1021/acs.jpcc.6b07886 (2016).

87.          F. Hall, S. Wußler, H. Buqa, and W. G. Bessler, “On the asymmetry of discharge/charge curves of lithium-ion battery intercalation electrodes,” J. Phys. Chem. C, 120 (41), 23407–23414, DOI: 10.1021/acs.jpcc.6b07949 (2016).

86.          D. Grübl, J. Janek, and W. G. Bessler, “Electrochemical pressure impedance spectroscopy (EPIS) as diagnostic method for electrochemical cells with gaseous reactants: A model-based analysis,” J. Electrochem. Soc. 163, A599-A610, DOI: 10.1149/2.1041603jes (2016).

85.          T. Jahnke, G. Futter, A. Latz, T. Malkow, G. Papakonstantinou, G. Tsotridis, P. Schott, M. Gérard, M. Quinaud, M. Quiroga,  A.A. Franco, K. Malek, F. Calle-Vallejo, R. Ferreira de Morais, T. Kerber, P. Sautet, D. Loffreda, S. Strahl, M. Serra, P. Polverino, C. Pianese, M. Mayur, W. G. Bessler, and C. Kompis, “Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale,” J. Power Sources 304, 207-233, DOI: 10.1016/j.jpowsour.2015.11.041 (2016).

84.          S. Lueth, U. S. Sauter, and W. G. Bessler, “An agglomerate model of lithium-ion battery cathodes,” J. Electrochem. Soc. 163, A210-A222, DOI: 10.1149/2.0291602jes (2016).

83.            A. A. Franco, M. L. Doublet, and W. G. Bessler, Editors, “Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage,” Springer, London (2016).

82.            W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 116-119 (2016)

2015

81.          M. Mayur, S. Strahl, A. Husar, and W. G. Bessler, “A multi-timescale modeling methodology for PEMFC performance and durability in a virtual fuel cell car,” Int. J. Hydrogen Energy 40, 16466-16476, DOI: 10.1016/j.ijhydene.2015.09.152 (2015).

80.          D. Grübl and W. G. Bessler, “Cell design concepts for aqueous lithium oxygen batteries: A model-based assessment,” J. Power Sources 297, 481-491, DOI: 10.1016/j.jpowsour.2015.07.058 (2015).

79.         S. Wahl, A. Gallet Segarra, P. Horstmann, M. Carré, W. G. Bessler, F. Lapicque, and K. A. Friedrich, “Modeling of a thermally integrated 10 kWe planar SOFC System with anode offgas recycling and internal reforming by discretisation in flow direction,” J. Power Sources 279, 656-666, DOI: 10.1016/j.jpowsour.2014.12.084 (2015). 

78.          C. Bao and W. G. Bessler, “Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis,” J. Power Sources, 278, 675-682, DOI: 10.1016/j.jpowsour.2014.12.045 (2015).

77.          C. Bao and W. G. Bessler, "Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development", J. Power Sources 275, 922-934, DOI: 10.1016/j.jpowsour.2014.11.058 (2015).

76.            W. G. Bessler, „Wie lange lebt die Brennstoffzelle? Ein EU-Forschungsprojekt zu Wasserstoffautos“, campus Magazin der Hochschule Offenburg 38, Sommer 2015, 90-91 (2015).

75.       D. Grübl, B. Bergner, J. Janek, and W. G. Bessler, “Dynamic Modeling of the Reaction Mechanism in a Li/O2 Cell: Influence of a Redox Mediator,” ECS Trans. 69, 11-21 (2015).

74.       A. Weidlich, U. Hochberg, W. G. Bessler, „Power-to-Gas optimiert einsetzen“, forschung im fokus, Hochschule Offenburg, 124-125 (2015).

2014

73.          N. Tanaka and W. G. Bessler, “Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells,” Solid State Ionics 262, 70-73 (2014).

72.          T. Danner, B. Horstmann, D. Wittmaier, N. Wagner, and W. G. Bessler, “Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li-O2 batteries:Experiments and modeling,” J. Power Sources 264, 320-332 (2014).

71.          A. F. Hofmann, D. N. Fronczek, and W. G. Bessler, “Mechanistic modeling of capacity loss and polysulfide shuttle in lithium-sulfur batteries”, J. Power Sources 259, 300-310 (2014).

70.          V. Yurkiv, R. Costa, Z. Ilhan, A. Ansar, and W. G. Bessler, “Impedance of the surface double layer of LSCF/CGO composite cathodes: An elementary kinetic model”, J. Electrochem. Soc. 161, F480-F492 (2014).

69.          P. Hartmann, D. Grübl, H. Sommer, J. Janek, W. G. Bessler, and P. Adelhelm, “Pressure dynamics in metal-oxygen (metal-air) batteries: a case study on sodium superoxide (NaO2) cells,” J. Phys. Chem. C 118, 1461-1471 (2014).

68.          S. Tippmann, D. Walper, L. Balboa, B. Spier, and W. G. Bessler, “Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior,” J. Power Sources 252, 305-316 (2014).

67.       W. G. Bessler, „Computergestützte Batterie- und Brennstoffzellentechnik“, forschung im fokus, Hochschule Offenburg, 77-79 (2014).

66.       D. Grübl, T. Danner, V. P. Schulz, A. Latz, W. G. Bessler, “Multi-methodology modeling and design of lithium-air cells with aqueous electrolyte,” ECS Trans. 62, 137-149 (2014).

65.       V. Yurkiv, J. P. Neidhardt, W. G. Bessler, „Elementary kinetic modeling of (electro-)chemical degradation mechanisms of the SOFC anode,” Proceedings of the 11th European SOFC Forum, Lucerne, Switzerland, p. B0609 (2014).

2013

64.          B. Horstmann, B. Gallant, R. Mitchell, W. G. Bessler, Y. Shao-Horn, and M. Z. Bazant, “Rate-dependent morphology of Li2O2 growth in Li-O2 batteries,” J. Phys. Chem. Lett. 4, 4217-4222 (2013).

63.          M. Henke, C. Willich, C. Westner, F. Leucht, J. Kallo, W. G. Bessler, and K. A. Friedrich, “A validated multi-scale model of a SOFC stack at elevated pressure,” Fuel Cells 13, 773-780 (2013).

62.          D. N. Fronczek and W. G. Bessler, “Insight into lithium-sulfur batteries: Elementary kinetic modeling and impedance simulation,” J. Power Sources 244, 183-188 (2013).

61.          B. Horstmann, T. Danner, and W. G. Bessler, “Precipitation in aqueous lithium-oxygen batteries: A model-based analysis,” Energy Environ. Sci. 6, 1299-1314 (2013).

60.          G. Schiller, C. Auer, W. G. Bessler, C. Christenn, Z. Ilhan, P. Szabo, H. Ax, B. Kapadia, W. Meier, “A novel concept for the investigation of gas composition during operation of a solid oxide fuel cell through one-dimensional gas-phase laser Raman spectroscopy,”, Appl. Phys. B 111, 29-38 (2013).

59.          T. Ou, F. Delloro, W. G. Bessler, A. Thorel, and C. Nicolella, "Proof of concept for the Dual Membrane Cell. Part II: Mathematical modeling of charge transport and reaction in the dual membrane," J. Electrochem. Soc. 160, F367-F374 (2013).

58.            W. G. Bessler, „Multi-scale modelling of solid oxide fuel cells,“ in: Solid Oxide Fuel Cells: From Materials to System Modeling, M. Ni and T. S. Zhao, Editors, RSC Energy and Environment Series No. 7 (Royal Society of Chemistry, Cambridge, UK), 219-246 (2013).

57.            W. G. Bessler, „Lithiumrevolution für Energiewende und Elektromobilität“, campus Magazin der Hochschule Offenburg, Winter 2013/2014, 26-27 (2013).

56.       V. Yurkiv, A. Latz, and W. G. Bessler, “Modeling and Simulation the Influence of Solid Carbon Formation on SOFC Performance and Degradation,” ECS Trans. 57, 2637-2647 (2013).

55.       J. P. Neidhardt, R. J. Kee, and W. G. Bessler, “Electrode reoxidation in solid-oxide cells: Detailed modeling of nickel oxide film growth,” ECS Trans. 57, 2573-2582 (2013).

54.       T. Jahnke and W. G. Bessler, “Modeling ruthenium dissolution in direct-methanol fuel cells,” Proceedings of the 5th International Conference Fundamentals and Development of Fuel Cells (FDFC), Karlsruhe, Germany, p. SPS206 (2013).

53.       J. P. Neidhardt, V. Yurkiv, and W. G. Bessler, “Spatiotemporal simulation of nickel oxide and carbon phases formation in solid oxide fuel cells (SOFC),” Proceedings of the 5th International Conference Fundamentals and Development of Fuel Cells (FDFC), Karlsruhe, Germany, p. P104 (2013).

2012

52.          J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, and W. G. Bessler, "A flexible framework for modeling multiple solid, liquid and gaseous phases in batteries and fuel cells," J. Electrochem. Soc. 159, A1528-A1542 (2012).

51.          V. Yurkiv, A. Gorski, W. G. Bessler, H.-R. Volpp, “Density functional theory study of heterogeneous CO oxidation over an oxygen-enriched yttria-stabilized zirconia surface,” Chem. Phys. Lett. 543, 213-217 (2012).

50.          C. Bao and W. G. Bessler, "A  computationally  efficient  steady-state  electrode-level  and  1D+1D  cell-level  fuel  cell  model," J. Power Sources 210, 67-80 (2012).

49.          V. Yurkiv, A. Utz, A. Weber, E. Ivers-Tiffée, H.-R. Volpp, and W. G. Bessler, "Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes," Electrochim. Acta 59, 573-580 (2012).

48.          A. Bertei, A. S. Thorel, W. G. Bessler, and C. Nicolella, "Mathematical modeling of mass and charge transport and reaction in a solid oxide fuel cell with mixed ionic conduction," Chem. Eng. Sci. 68, 606-616 (2012).

47.       R. Costa, R. Spotorno, N. Wagner, Z. Ilhan, V. Yurkiv, W. G. Bessler, and A. Ansar, “Development and Characterization of LSCF/CGO composite cathodes for SOFCs,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B04-48 (2012).

46.       J. P. Neidhardt and W. G. Bessler, “Oxidation of nickel in solid oxide fuel cell anodes: A 2D kinetic modeling approach,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B05-17 (2012).

45.       V. Yurkiv, R. Costa, Z. Ilhan, A. Ansar, and W. G. Bessler, “Elementary Kinetics and Mass Transport in LSCF-Based Cathodes: Modeling and Experimental Validation,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-6 (2012).

44.       A. Gorski, V. Yurkiv, W. G. Bessler, and H.-R. Volpp, “CO Oxidation at the SOFC Ni/YSZ Anode: Langmuir-Hinshelwood and Mars-van-Krevelen versus Eley-Rideal Reaction Pathways,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-81 (2012).

43.       J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, and W. G. Bessler, “A flexible modeling framework for multi-phase management in SOFCs and other electrochemical cells,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-130 (2012).

42.       C. Willich, M. Henke, C. Westner, F. Leucht, W. G. Bessler, J. Kallo, and K. Andreas Friedrich, “Fuel Variation in a Pressurized SOFC,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B11-123 (2012).

41.       S. Hink, N. Wagner, W. G. Bessler, E. Roduner, “Impedance spectroscopic investigation of proton conductivity in Nafion using transient electrochemical atomic force microscopy (AFM),” Membranes 2, 237-252 (2012).

2011

40.          M. Henke, J. Kallo, K. A. Friedrich, and W. G. Bessler, "Influence of Pressurization on SOFC Performance and Durability: A Theoretical Study," Fuel Cells 11, 581-591 (2011).

39.          E. Mutoro, C. Hellwig, B. Luerßen, S. Günther, W. G. Bessler, and J. Janek, "Electrochemically induced oxygen spillover and diffusion on Pt(111): PEEM imaging and kinetic modelling," Phys. Chem. Chem. Phys. 13, 12798–12807 (2011).

38.          S. Seidler, M. Henke, J. Kallo, W. G. Bessler, U. Maier, and K. A. Friedrich, "Pressurized Solid Oxide Fuel Cells: Experimental Studies and Modeling," J. Power Sources 196, 7195-7202 (2011).

37.          M. Eschenbach, R. Coulon, A. A. Franco, J. Kallo, and W. G. Bessler, "Multi-scale modelling of fuel cells: From the cell to the system," Solid State Ionics 192, 615-618 (2011).

36.          W. G. Bessler and T. Nilges, "Trendberichte Festkörperchemie 2010", Nachrichten aus der Chemie 59, 246-253 (2011).

35.          F. Leucht, W. G. Bessler, J. Kallo, K. A. Friedrich, and H. Müller-Steinhagen, "Fuel Cell System Modelling for SOFC/GT Hybrid Power Plants, Part I: Modelling and simulation framework," J. Power Sources 196, 1205-1215 (2011).

34.          V. Yurkiv, D. Starukhin, H.-R. Volpp, and W. G. Bessler, "Elementary reaction kinetics of the CO/CO2/Ni/YSZ electrode," J. Electrochem. Soc. 158, B5-B10 (2011).

2010

33.          W. G. Bessler, M. Vogler, H. Störmer, D. Gerthsen, A. Utz, A. Weber, and E. Ivers-Tiffée, "Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells," Phys. Chem. Chem. Phys. 12, 13888-13903 (2010).

32.          M. Vogler, M. Horiuchi, and W. G. Bessler, "Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner," J. Power Sources 195, 7067-7077 (2010).

31.          W. G. Bessler, S. Gewies, C. Willich, G. Schiller, and K. A. Friedrich, "Spatial distribution of electrochemical performance in a segmented SOFC: A combined modeling and experimental study," Fuel Cells 10, 411-418 (2010).

2009

30.          M. Vogler, A. Bieberle-Hütter, L. J. Gauckler, J. Warnatz, and W. G. Bessler, "Modelling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode," J. Electrochem. Soc. 156, B663-B672 (2009).

29.          M. Horiuchi, F. Katagiri, J. Yoshiike, S. Suganuma, Y. Tokutake, H. Kronemayer, and W. G. Bessler, "Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane," J. Power Sources 189, 950-957 (2009).

28.            S. B. Adler and W. G. Bessler, "Elementary kinetic modeling of SOFC electrode reactions," in: Handbook of Fuel Cells - Fundamentals, Technology and Applications, Vol. 5, W. Vielstich, H. Yokokawa, and H.A. Gasteiger, Editors (John Wiley & Sons, Chichester, UK), 441-462 (2009).

2008

27.          S. Gewies and W. G. Bessler, "Physically based impedance modeling of Ni/YSZ cermet anodes," J. Electrochem. Soc. 155, B937-B952 (2008).

26.          J. Rossmeisl and W. G. Bessler, "Trends in catalytic activity for SOFC anode materials," Solid State Ionics 178, 1694-1700 (2008).

25.          T. Lee, W. G. Bessler, J. Yoo, C. Schulz, J. B. Jeffries, and R. K. Hanson, "Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames," Appl. Phys. B 93, 677-685 (2008).

2007

24.          W. G. Bessler, S. Gewies, and M. Vogler, "A new framework for detailed electrochemical modeling of solid oxide fuel cells," Electrochim. Acta 53, 1782-1800 (2007).

23.          W. G. Bessler, "Rapid impedance modeling via potential step and current relaxation simulations," J. Electrochem. Soc. 154, B1186-B1191 (2007).

22.          W. G. Bessler and S. Gewies, "Gas concentration impedance of solid oxide fuel cell anodes. II. Channel geometry," J. Electrochem. Soc. 154, B548-B559 (2007).

21.          H. Kronemayer, D. Barzan, M. Horiuchi, S. Suganuma, Y. Tokutake, C. Schulz, and W. G. Bessler, "A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane and butane," J. Power Sources 166, 120-126 (2007).

20.          W. G. Bessler, J. Warnatz, and D. G. Goodwin, "The influence of equilibrium potential on hydrogen oxidation kinetics of SOFC anodes," Solid State Ionics 177, 3371-3383 (2007).

2006

19.          M. Tutuianu, O. Inderwildi, W. G. Bessler, and J. Warnatz, "Competitive adsorption of NO, NO2, CO2 and H2O on BaO(100): A quantum chemical study," J. Phys. Chem. B 110, 17484-17492 (2006).

18.          W. G. Bessler, "Gas concentration impedance of solid oxide fuel cell anodes. I. Stagnation point flow geometry," J. Electrochem. Soc. 153, A1492-A1504 (2006).

2005

17.          W. G. Bessler, “A new computational approach for SOFC impedance based on detailed electrochemical reaction-diffusion models,” Solid State Ionics 176, 997-1011 (2005).

16.          J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, and T. Settersten, "Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra," AIAA J. 43, 458-464 (2005).

15.          H. Kronemayer, W. G. Bessler, and C. Schulz "Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry," Appl. Phys. B81, 1071-1074 (2005).

14.          T. Lee, W. G. Bessler, H. Kronemayer, C. Schulz , and J. B. Jeffries, "Quantitative temperature measurements in high-pressure flames with multi-line NO-LIF thermometry," Appl. Opt. 44, 6718-6728 (2005).

13.          A. Franke, W. Koban, J. Olofsson, C. Schulz, W. G. Bessler, R. Reinmann, A. Larsson, and M. Aldén, "Application of advanced laser diagnostics for the investigation of the ionization sensor signal in a combustion bomb," Appl. Phys. B81, 1135-1142 (2005).

12.          W. G. Bessler, M. Hofmann, F. Zimmermann, G. Suck, J. Jakobs, S. Nicklitzsch, T. Lee, J. Wolfrum, and C. Schulz "Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection," Proc. Combust. Inst. 30, 2667-2674 (2005).

11.          J. B. Jeffries, C. Schulz , D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, and R. K. Hanson, "UV Absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications," Proc. Combust. Inst. 30, 1591-1599 (2005).

2004

10.          W. G. Bessler and C. Schulz "Quantitative multi-line NO-LIF temperature imaging," Appl. Phys. B78, 519-533 (2004).

9.            T. Lee, W. G. Bessler, C. Schulz , M. Patel, J. B. Jeffries, and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame," Appl. Phys. B79, 427-430 (2004).

2003

8.            M. Hofmann, W. G. Bessler, C. Schulz, and H. Jander, "Laser-induced incandescence (LII) for soot diagnostics at high pressure," Appl. Opt., 2052-2062 (2003).

7.            W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Carbon dioxide UV laser-induced fluorescence in high-pressure flames," Chem. Phys. Lett. 375, 344-349 (2003).

6.            W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation," Appl. Opt. 42, 2031-2042 (2003).

5.            W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames: III. Comparison of A-X Strategies," Appl. Opt. 42, 4922-4936 (2003).

2002

4.            W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, and R. K. Hanson, "Quantitative NO-LIF imaging in high-pressure flames," Appl. Phys. B 75, 97-102 (2002).

3.            W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation," Appl. Opt. 41, 3547-3557 (2002).

2.            J. B. Bell, M. S. Day, J. F. Grcar, W. G. Bessler, C. Schulz, P. Glarborg, and A. D. Jensen, "Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame," Proc. Combust. Inst. 29, 2195-2202 (2002).

2001

1.            W. G. Bessler, F. Hildenbrand, and C. Schulz, "Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO," Appl. Opt. 40, 748-756 (2001).

 

Betreute Doktorarbeiten

15.          S. Carelli, “Mechanistic modelling of electrochemical ageing reactions at the graphite anode of lithium-ion batteries“, Karlsruher Institut für Technologie, Karlsruhe (2021). (Link)

14.          C. Kupper, "Lebensdauer und Sicherheit von Lithium-Ionen-Batterien für die dezentrale Speicherung regenerativer Energien: Modellbasierte Untersuchung einer Lithiumeisenphosphatzelle", Universität Freiburg (2019). (Link)

13.          D. Grübl, “Dynamic modeling and simulation of electrochemistry and transport in metal-air batteries“, Universität Gießen (2016). (Link)

12.          S. Lüth, “Untersuchung des Einflusses der Mikrostruktur von Kathoden auf das Entladeverhalten von Lithiumionenhalbzellen“, Universität Stuttgart (2016). (Link)

11.          S. Tippmann, “Modellierung und experimentelle Charakterisierung des Degradationsverhaltens durch Lithium-Plating an Lithium-Ionen-Zellen unter automobilen Betriebsbedingungen“, Universität Stuttgart (2015). (Link)

10.          D. Fronczek, “Experimental characterization, design improvements, and physically-based modeling of lithium-sulfur cells with Li2S-based positive electrodes”, Universität Stuttgart (2015). (Link)

9.            N. Tanaka, “Modeling and simulation of thermo-electrochemistry of thermal runaway in lithium-ion batteries”, Universität Stuttgart (2015). (Link)

8.            T. Danner, “Modeling and experimental investigation of transport processes in the porous cathode of aqueous Li-air batteries”, Universität Stuttgart (2015). (Link)

7.            J. Neidhardt, “Nickel oxidation in solid oxide cells: Modeling and simulation of multi-phase electrochemistry and multi-scale transport”, Universität Stuttgart (2013). (Link)

6.            C. Hellwig, “Modeling, simulation and experimental investigation of the thermal and electrochemical behavior of a LiFePO4-based lithium-ion battery”, Universität Stuttgart (2013). (Link)

5.            R. Coulon, “Modélisation de la dégradation chimique de membranes dans les piles à combustibles à membrane électrolyte polymère”, Université de Grenoble (2012). (Link)

4.            V. Yurkiv, "Modeling and validation of heterogeneous catalytic processes in fuel cells", Universität Heidelberg (2010). (Link)

3.            M. Vogler, "Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system", Universität Heidelberg (2009). (Link)

2.            S. Gewies, "Modellgestützte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden", Universität Heidelberg (2009). (Link)

1.            M. Tutuianu, “Quantum mechanical modeling of surface reactions in storage catalytic converters“, Universität Heidelberg (2007). (Link)

In der Forschungsgruppe Elektrische Energiespeicherung verwenden wir unter anderem die Open-Source-Software Cantera. Hier stellen wir Cantera-Eingabedateien für von uns veröffentlichte Modelle zur Verfügung.

  • Carelli_2020_JElectrochemSoc.cti: Cantera input file for a NCA-LCO/graphite lithium-ion cell. See S. Carelli and W. G. Bessler, "Prediction of reversible lithium plating with a pseudo-3D lithium-ion battery model" J. Electrochem. Soc. 167, 100515 (2020), DOI: 10.1149/1945-7111/ab95c8
  • Carelli_2019_JElectrochemSoc.cti: Cantera-Eingabedatei für eine NCA-LCO/Graphit-Lithium-Ionen-Batterie. Siehe S. Carelli, M. Quarti, M. C. Yagci, W. G. Bessler, "Modeling and Experimental Validation of a High-Power Lithium-Ion Pouch Cell with LCO/NCA Blend Cathode" J. Electrochem. Soc. 166, A2990-A3003 (2019), DOI: 10.1149/2.0301913jes
  • Mayur_2019_ElectrochimActa.cti: Cantera-Eingabedatei für eine LCO/Graphit-Lithium-Ionen-Batterie. Siehe M. Mayur, S. DeCaluwe, B. L. Kee, W. G. Bessler, "Modeling thermodynamics and kinetics of intercalation phases for lithium-ion batteries in Cantera", Electrochim. Acta 323, 134797 (2019), DOI: 10.1016/j.electacta.2019.134797
  • Kupper_2017_JElectrochemSoc.cti: Cantera-Eingabedatei für eine LFP/Graphit-Lithium-Ionen-Batteriezelle. Siehe C. Kupper und W. G. Bessler, “Multi-Scale Thermo-Electrochemical Modeling of Performance and Aging of a LiFePO4/Graphite Lithium-Ion Cell”, J. Electrochem. Soc. 164, A304-A320 (2017), DOI: 10.1149/2.0761702jes